Asian Resonance

Comparative Tharmal Energies of Manganese and Iron Soaps (Myristate and Stearate) By Thermogravimetric Analysis

Paper Submission: 15/01/2021, Date of Acceptance: 29/01/2021, Date of Publication: 30/01/2021

Abstract

Comparative studies of thermogravimetric analysis of manganese andiron soaps (myristate and stearate) have been used to determine the rate of reaction kinetics of reaction and energy of activation by using the various equations Freeman Carroll's, Coat-Redern's and horowitz-Metzer's.

Thermogravimetric analysis of these soaps carried out by 780 series Stanton's Redford's (U.K) in the static air medium at constant heating 10° per minute and maintaining similar conditions throughout the investigations. The result shows that the decomposition reaction for manganese and iron transition metal soaps (myristate and stearate) are found to be kinetically zero order and the value for the energy of activation decomposition of manganese and iron soaps lies in the range 7.67 to 38.18 k.cal / mole activation energy increases with increasing the chain length.

Keywords: TGA, isothermally, physical chemical, transition metals, decomposition, kinetically, activation energy, Myriston, stearon, chain length

Introduction

The study of transition metal soaps is becoming progressively useful in technical and as well as academic field. These transition metal soaps are insoluble in non polar solvent but it fairly soluble in organic (nonpolar) solvent or solvent mixture solution and have relatively high metal content which fand them useful in industries as well as is in academic field. The utility of metal soaps mainly depend on their physical state, stability, chemical reactivity and Solubility in various non-polar solvent or solvent mixtures. The physico-chemical characteristics and structure of metal soaps can be maintained up to an extent by the method and condition of their preparation. The heavy metal soaps have valuable application in technological and academic and other important Role in many diversified area like as driers, thickener, paints, catalysts, lubricants, wetting agent, plastic, cosmetics, ink, stabilizer etc. by several workers'*. TGA measure the amount of weight change of material i.e Manganese myristate and iron stearate either as a function of increasing temperature of isothermally or as a function of time by maintaining similar condition throughout the investigation and thermogram of manganese and iron soaps present in figure 1.

Chandrawati

Associate Professor, Head of Department, Dept. of Chemistry, D.P.B.S. (PG) College, Anoopshahr, U.P., India E: ISSN No. 2349-9443 Asian Resonance

FIG 3.1. : Thermograns of Manganese and Iron Soaps

Method and Materials

All chemical were used of BDH /AR grade. Potassium myristate and stearate were prepared by refluxing Equivalent amount of corresponding fatty acids (myristate and stearate) and aqueous solution of potassium hydroxide for 6-8 Hours. Manganese and iron soaps were prepared by direct metathesis of corresponding potassium soap (myristate and stearate) with slight excess of Manganese chloride and ferric chloride respectively. The precipitated Soaps washed many times with acetone and distilled water. Theprepared soap dried in an air oven at 50°-60°. The final drying of precipitated soaps were carried out under the reduced pressure, finally the soaps were purified by recrystallization with Benzene methanol mixture. The purity of the soaps was Table – 1

Time, t

confirmed by determining their melting point and absence of hydroxide group in the soaps were confirmed by studying their infrared absorption spectrum. Thethermogravimetric analysis of Manganese and iron soaps were carried out by 780 series-Stanton (U K) in static air medium at constant heating rate 10° per minute in nitrogen atmosphere and maintaining similar condition throughout the investigations.

Aim of study

The present work deals with comparative TGA measurement of the manganese and iron (myristate and stearate) soaps in solid state has been initiated with a view to obtain the value of energy of activation and order of the decomposition reaction of manganese and iron soaps.

THERMOGRAVIMETRIC ANALYSIS OF MANGANESE MYRISTATE								
S. No.	Time, t (minute)	Temperature, T (A)	Weight of the soap decomposed, w × 10 ³ (g)	dw/dt.10 ⁶	w _r .10 ³			
1.	5.0	321	0.000		0.8874			
2.	7.8	359	0.110	1.4102	0.8764			
3.	9.8	364	0.0220	2.2449	0.8654			
4.	11.7	390	0.0352	3.0085	0.8522			
5.	13.2	415	0.0502	3.8030	0.8372			
6.	15.4	427	0.0609	3.9545	0.8265			
7.	17.6	450	0.0681	3.9261	0.8183			

Asian Resonance

E: ISSN No. 2349-9443

8.	21.4	480	0.0753	3.5189	0.8121	
9.	25.2	525	0.0852	3.3809	0.8022	
10.	27.2	540	0.1002	3.6838	0.7872	
11.	28.9	555	0.1560	5.3979	0.7314	
12.	29.5	568	0.2007	6.8034	0.6867	
13.	30.2	575	0.2715	8.9900	0.6159	
14.	30.9	582	0.3510	11.3592	0.5364	
15.	31.6	589	0.4462	14.1202	0.4412	
16.	32.3	596	0.5547	17.1734	0.3327	
17.	33.4	605	0.6848	20.5029	0.2026	
18.	34.8	620	0.7720	22.1839	0.1154	
19.	39.3	650	0.8235	20.9542	0.0639	
20.	42.9	710	0.8590	20.0233	0.0284	
21.	45.1	735	0.8659	19.1995	0.0215	
22.	48.4	760	0.8874	18.3347	0.0000	
						_

Table – 2

THERMOGRAVIMETRIC ANALYSIS OF MANGANESE STEARATE Weight of the soap decomposed, dw/dt.106 w_r.10³ Time, t (minute) Temperature, T (A) S. No. $w \times 10^{3}$ (g) 1. 4 313 0.00 0.5580 18.0 2. 453 0.0237 1.3166 0.5343 3. 21.5 489 0.0320 1.4883 0.5260 1.7489 4. 508 0.0418 2.5162 23.9 5. 26.0 533 0.0523 2.0115 0.5057 6. 27.4 547 0.0680 2.4817 0.4900 7. 28.0 554 2.9464 0.4755 0.0825 8. 28.5 558 0.4532 0.1048 2.6772 9. 28.8 561 0.1274 4.4236 0.4306 10. 29.1 565 0.1502 5.0572 0.4078 29.5 568 0.3910 11. 0.1670 5.6610 29.9 0.3630 12. 572 0.1950 6.5218 13. 30.2 575 0.2241 7.4205 0.3339 14. 30.6 579 0.2580 8.4314 0.3000 15. 30.9 582 0.3072 9.9417 0.2508 16. 31.3 586 0.3282 10.4222 0.2318 589 0.1895 17. 31.6 0.3685 11.6614 18. 32.0 593 0.3945 12.3281 0.1635 19. 32.8 597 0.4270 13.0183 0.1310 605 20. 33.7 0.4510 13.3828 0.1070 21. 34.5 618 0.4710 13.6522 0.0870 22. 35.6 627 0.4755 13.3567 0.0825 23. 38.0 653 0.4838 12.7316 0.0742 24. 39.0 663 0.0600 0.4980 12.7692 25. 41.2 678 0.5150 12.5000 0.0430 26. 42.5 0.0414 695 0.5166 12.1553 27. 44.9 0.0290 713 0.5290 11.7817 28. 46.0 743 0.5436 0.0144 11.8174 29. 48.8 761 0.5528 11.3279 0.0052 30. 50.8 798 0.5580 10.9843 0.0000

Table – 3

THERMOGRAVIMETRIC ANALYSIS OF IRON (III) MYRISTATE								
S. No.	Time, t (minute)	Temperature, T (A)	Weight of the soap decomposed, w × 10 ³ (g)	dw/dt.10 ⁶	w _r .10 ³			
1.	4.0	323	0.0000		0.5221			
2.	6.6	360	0.0134	2.0303	0.5087			
3.	9.3	410	0.0220	2.3656	0.5001			
4.	12.0	450	0.0344	2.8666	0.4877			
5.	14.5	490	0.0454	3.1310	0.4767			
6.	17.3	550	0.1478	8.5434	0.3743			
7.	20.0	570	0.2840	14.2000	0.2381			
8	22.8	610	0.3550	15 5701	0 1671			

Asian Resonance

E: ISSN No. 2349-9443

		-				
9.	25.8	650	0.4558	17.6666	0.0663	Ī
10.	28.0	690	0.4730	16.8923	0.0491	
11.	30.6	730	0.4795	15.6700	0.0426	
12.	33.8	770	0.4920	14.5562	0.0301	
13.	36.6	810	0.5050	14.3442	0.0171	
14.	38.6	850	0.5058	13.1036	0.0141	
15.	41.3	890	0.5090	12.3244	0.0131	
16.	44.0	930	0.5120	11.6364	0.0101	
17.	46.6	970	0.5175	11.1052	0.0046	
18.	49.3	1010	0.5180	10.5071	0.0041	
19.	52.8	1050	0.5190	9.8295	0.0031	
20.	54.6	1090	0.5200	9.5238	0.0021	
21.	57.5	1130	0.5221	9.0800	.00000	

Table – 4

THERMOGRAVIMETRIC ANALYSIS OF IRON (III) STEARATE								
S. No.	Time, t (minute)	Temperature, T (A)	Weight of the soap decomposed, w × 10 ⁵ (g)	Dw/dt.10	⁶ w _r .10 ³			
1.	0.0	323	0.0000		0.7410			
2.	4.0	339	0.0126	3.1500	0.7284			
3.	8.8	361	0.0321	3.6477	0.7089			
4.	9.5	378	0.0438	4.6105	0.6972			
5.	13.2	415	0.0498	4.7720	0.6912			
6.	16.3	432	0.0528	3.2392	0.6882			
7.	18.5	460	0.0617	3.3351	0.6793			
8.	20.4	470	0.0690	3.3823	0.6720			
9.	21.2	485	0.0720	3.3962	0.6690			
10.	23.1	510	0.0940	4.0392	0.6470			
11.	25.8	538	0.1420	5.5038	0.5990			
12.	27.3	548	0.1820	6.6666	0.5590			
13.	27.7	550	0.2410	8.7003	0.5000			
14.	28.0	555	0.3545	12.6607	0.3865			
15.	28.4	558	0.4270	15.0352	0.3140			
16.	29.0	565	0.4770	16.4482	0.2640			
17.	29.4	567	0.5280	17.9591	0.2130			
18.	30.5	578	0.5828	19.1081	0.1582			
19.	31.5	589	0.6600	20.9523	0.0810			
20.	32.8	602	0.6868	20.9390	0.0542			
21.	33.6	609	0.6950	20.6845	0.0460			
22.	36.5	640	0.7140	20.3013	0.0270			
23.	42.5	690	0.7220	16.9880	0.0190			
24.	51.0	785	0.7410	14.5294	0.0000			
	The weight of final Res	idue metal oxides are	soaps may	be	expressed	as		

The weight of final Residue metal oxides are in agreement with theoretically calculated weight of manganese oxide and iron oxide from the molecular formula of the corresponding soaps. Thermal decomposition may be expressed as

(RCOO)₂M → RCOR + MO or M₂O₃ + CO₂ Ketone Metal oxide Carbon Dioxide

Where R is $-C_{13}H_{27}$, and $-C_{17}H_{35}$ for myristate and stearate, respectively and M is manganese and iron metal.

The result of thermal decomposition of manganese and iron soaps have been explained in terms of various equations Freeman Carroll rate equation for thermal decomposition for various metal

 $\Delta log \omega_r$ Where,

 $\Delta [\log(d\omega\omega/dt)]$

T = Temperature on absolute scale;

n = order of decomposition reaction

Ε

 $\Delta[1/T]$

 $2.303 R^{\Delta}(\log \omega_{r})$

+n

E = Energy of activation;

 ω_{r} = Difference between the total loss in weight and the loss in weight at time, t

i.e. $\omega_0 - \omega_t$; and

 $(d\omega/dt)$ = Value of rate of weight loss obtained from the loss in weight vs time curves at appropriate time.

And the plots of
$$\frac{\Delta[\log d\omega\omega/dt}{\Delta[\log\omega_r]}$$
 vs. $\frac{\Delta(1/T)}{\Delta(\log\omega_r)}$ are

shown in fig. 2.

The result from Freeman Carroll's equation indicate that the thermal decomposition of these shops s ows Kinetically of zero order and the value of activation for the decomposition of manganese and iron soaps obtained from above plots lie in the range 15.1719.05 K.cal.per mole. Coats and Redfern's equation for the thermal decomposition of a compound can be expressed as:

$$\log\left[\frac{1-(1-\alpha)^{1-n}}{T^{2}(1-n)}\right] = \log\frac{AR}{aE}\left[1-\frac{2RT}{E}\right] - \frac{E}{2.303RT}$$

Where,

 α = Fraction of the soap decomposed;

- T = Temperature on absolute scale;
- R = Gas constant;
- A = Frequency factor; a = Rate of heating in $^{\circ}$ C per minute;
- E = Energy of activation; and

n = Order of reaction

The equation for zero order reaction can be written

α_{-1}	$AR _1$	2RT	Е
as. $\log \frac{1}{T^2} = 10$	$aE \begin{bmatrix} 1 \\ a \end{bmatrix}$	Ē	2.303RT

 $\Delta(1/_{T})/-\Delta(\log\omega_{r}) \times 10^{4}$

It may be pointed out that the plots of log(a/T) against (1/T) should be a straight line with its slope equal to (-E/2.303R). The values of the energy of activation for manganese and iron soaps obtained from the plots (fig. 3) is found in the range of 17.84 7.67 K. cal. Permollt may be pointed out that the plots of log(a/T') against (1/T) should be a straight line with its slope equal to (-E/2.303R). The values of the energy of activation for manganese and iron soaps obtained from the plots (fig. 3) is found in the range of 17.84 7.67 K. cal. mol.

The value of energy of energy of activation for the thermal decomposition of manganese and Iron soaps of different fatty acids have also been calculated by using Horowitz and Metzger's equation and expressed as

$$\ln[\ln(1-\alpha)^{-1}] = \frac{E}{RT_{c}^{2}}.6$$

Where,

 α = Fraction of the soap decomposed at time, t E = Energy of activation $1/T \times 10^{5}$

 T_s = Temperature on absolute scale at which the rate of decomposition is maximum, and θ = T - T_s

The plots of ln [ln $(1 - \alpha)^{-1}$] against θ for manganese myristate, manganese stearate, iron myristate and iron stearate are shown in Fig. 3.4 and the value of energy of activation obtained from the slope of the curve lies in the range of 38.18 – 24.17 K. cal. Mol⁻¹ (Table 5).

It is suggested that the surface of the soap molecules remain completely covered all the time by the molecules of gases product as the decomposition is fast and so the rate of the decomposition becomes Table – 5

Δθ

constant and the process a kinetically of zero order and the comparative activation energy of manganese and iron soaps (myristate and stearate)for the process lies in the range of 38.18 7.67 K.calper mole.

ENERGY OF ACTIVATION (k cal. mol⁻¹) FOR THE DECOMPOSITION OF MANGANESE AND IRON SOAPS BY USING VARIOUS EQUATIONS.

S. No.	Name of the soap	Freeman Equation	and	Carroll's	Coats Equatio	and n	Redfern's	Horowitz Metzger's Equation	and
1.	Manganese myristate	14.08			13.81			24.33	
2.	Manganese stearate	15.17			17.84			25.48	
3.	Iron myristate	13.05			7.67			24.17	
4.	Iron stearate	10.05			9.80			38.18	
D. K. L.			0						

Result and discussion

The value of decomposition process of metal soaps shows that initially decreases slowly because of removal or loss of water and carbon dioxide molecule and then fast due to the removal of ketone (carbonyl) and finally it is constant due to formation of oxide of manganese and iron as mention in Table 1-5.

Conclusion

it is concluded that the decomposition process of these metal soaps follows the zero order kinetic and activation energy lies in the range 38.18-7.67 k.cal per mol.

References

- 1. Manganese and iron catalyst in alkyah paints and coatings. Inorganics 4(2)11 April-2016. Ronald Hage ,JohnnesW.de Boer and Karin Maaijen.
- Oxidative drying alkyah paints bi Metal complexRemy Van Gorkum-Elizabeth Bouwman

- Science direct volume 249 issues 17-18 September 2005 page – 1709-1728Science direct – advance inorganic chemistry
- Manganese and iron bleaching and oxidation catalyst Ronald Hage, Karin MaaijenVolume 65 coma 2013 Page – 85-116Driers and metallic soaps.Viley online libraryMarin Landan 4 December (2000)
- Jain and S.K. Upadhyay ,Cell.Chem and Tech. 47 (1-2) 77-82(2013).
- Gupta and S.K. Upadhyay, Cell. Chem. And Tech ,47(1-2) 77-82(2013).
- V.Sharma ,Sangeeta ,and M.K. Rawat ,IntJournal of current adv. Research 7(B) 8854-8856, JAN.2018
- 8. D. Kulshrestha, S. Tomar , Sundar, S. Kumar, R.Sharma, A.Kumar and S.

Verghese,J.IND.Conuc.cam.,25(2),345-348(2009).

 T.D. Haworth and F.M Raab, J. Cof Inter Sci 134 (2), 580 (1990)

Asian Resonance

- 10. K.N. Mehrotra, R.K. Shukla and M Chauhan Bull, Chem. Soc. Japan, 68 (7), 1829 (1995).
- 11. KN. Mehrotra, M Anis, Tenside Surf. Det. 38, 116(2007).
- 12. KN Mehrotra, M Chauhan and RK. ShuklaTenside Surf, Det. 34, 2124 (1997)
- 13. E.S. Freeman, B. Carroll, Journal of Phys. Chem., 62,394 (1958).
- 14. A.w. Coats and J.P. Redfern, Nature, 201,68 (1964).
- 15. H.H. Horowitz and G. Metzger, Anal. Chem., 35 (1964).